

LINCOLN UNIVERSITY DAIRY FARM

FOCU

Wednesday 9 October 2024 10.15am - 1.00pm

> Parking: entrance off Ellesmere Junction Rd SN37581

LOWDOWN ON LUDF

Peter Hancox & Antoinette Archer Season to date: review of winter and calving

- 24/25 season plan
- Preparing for mating
- 23/24 review including insights report 23/24 financial results and 24/25 budget

SAVE MONEY, MAKE MONEY, **MANAGE MONEY**

Tom Norris (ASB) & Glenn Jones (Farmer)

- What's happening in the financial markets and how does this affect me?
- Managing risk and creating resilience
- What are the tools at your disposal
- Governance and it is so important to the bank

Register on the day from 10.15am Light lunch provided

> E. office@siddc.org.nz T. (03) 423-0022

GROW MORE GRASS WITH EACH

PASS - optimising your irrigation Dan McLaughlin (Waterforce) &

Andrew Curtis (Primary Insight)

- Understanding your soil moisture trace. Is it set up correctly and how to use it to start and stop irrigating
- Maximising value from existing systems
- Bucket tests and full performance assessments
- System design and what's new at LUDF
- Irrigation technology

Welcome to Lincoln University Dairy Farm (LUDF).

The farm is a fully operational, commercial dairy farm with a number of potential hazards for both visitors and staff. Many of the potential hazards cannot be eliminated while also providing access to visitors, therefore, all staff and visitors MUST watch for potential hazards and act with caution.

Hazard Summary: Look, think, act.

The following chart provides a reminder of the types of hazards at LUDF. Watch for these and any other hazards that may be on the farm today.

People:	Animals:	Milking shed:
Uninformed/ill-prepared visitors may be the greatest risk	You are in their space	 Moving rotary platform Confined animals Chemicals
 Eyes / Ears: Water / oil / milk / chemical splashes Welding flashes Loud machinery 		 Touch: Hot/cold surfaces, hot water, chemical burns Electric fences – treat them as high voltage power sources
On-farm machinery and tools	Potential slips/trips:	Vehicles:
Chainsaws, hand tools etc. generate noise, fragments	 Uneven surfaces occur across the farm Fences Drains Underpass Effluent pond 	 Contractors and farm equipment – act as though they can't see you – keep out of their way Centre Pivot takes precedence over your plan

ARE YOU TRAINED FOR WHAT YOU ARE ABOUT TO DO? If not, STOP.

If you are uncertain how you should act or proceed, stop and contact the farm manager, other farm staff or your host.

By entering this farm, you are acknowledging your receipt of this hazard summary and your agreement to take personal responsibility to watch out for potential hazards and act in such a manner as to protect yourself and any others also on-farm.

SIDDC FOCUS DAY

October 9th 2024

10:15am - 1:00pm

Lowdown on LUDF

- Season to date: review of winter and calving
- 24/25 season plan
- Preparing for mating
- 23/24 review including insights report
- 23/24 financial results and 24/25 budget

Save money, make money, manage money

- What's happening in the financial markets and how does this affect me?
- Managing risk and creating resilience
- What are the tools at your disposal
- Governance and why it is so important to the bank

Grow more grass with each pass

- Understanding your soil moisture trace.
 Is it set up correctly and how to use it to start and stop irrigating.
- Maximising value from existing systems
- Bucket tests and full performance assessments
- System design and what's new at LUDF
- Irrigation technology

Contact us: Ph: 03 423 0022 www.siddc.org.nz www.ludf.org.nz With thanks to our sponsors:

Like us & follow us on Facebook and Instagram

SIDDC

Lincoln University Dairy Farm (LUDF) is a demonstration farm developed by the South Island Dairy Demonstration Centre (SIDDC). This industry-funded partnership of seven leading dairy sector organisations collaborate to promote the sustainable development of South Island dairying via demonstration activities, research, education and training of farmers. The current partners of SIDDC are:

Strategic Objective at LUDF

To maximise sustainable profit embracing the whole farm system through:

- Increasing productivity
- Without increasing the farm's total environmental footprint
- While operating within definable and acceptable animal welfare targets; and
- Remaining relevant to Canterbury (and South Island) dairy farmers by demonstrating practices achievable by leading and progressive farmers.

Focus for 2024/25 Season:

Nil-Infrastructure, low input, low N-loss, optimise profit.

Current farm system:

- 3.5 cows/ha (560 peak milked).
- Target up to 190kg N/ha synthetic fertiliser.
- 450kgDM/cow imported supplement with cows wintered off farm.
- Cost control FWE budget of \$5.50/kg MS \$1.464M.
- Target production 475 kg MS/cow (100% liveweight in milk production less 6% with 10 in 7 milking).

Current research projects on the farm

Flexible Milking Project

- 10 milkings in 7 days all season incorporating OAD milking for transition cows (10 days).
- Fourth season implementing a 10 in 7 flexible milking regime.
- Prediction was 6% drop in MS production.
- Last season we achieved a 6.2% drop over our three year TAD average.
- Challenge it to maintain a 6% (or less) drop year on year.
- Profitability aim is to remain the same due to lower costs. Though labour demand, less animal health and shed costs, better cow condition, targeted winter feeding levels on BCS and improved mating results.
- Profitability will be challenged during higher payout years due to drop 6% drop in production.

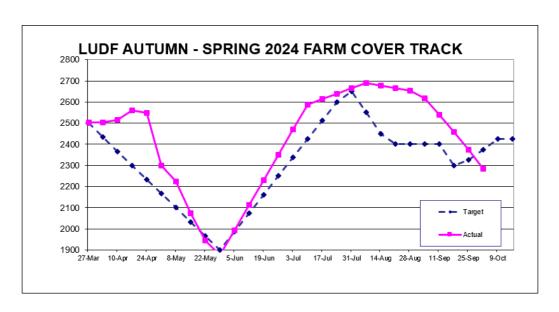
Plantain Grazing Project

- Aim for a minimum of 10% of the diet, with a target of 30% of the diet, in plantain via a mixed sward.
- To assess composition over time through direct drilling and broadcast with a spring and autumn sowing date.
- To result in decrease in N loss in OverseerFM from 26 kg N/ha/yr to 23 kg N/ha/yr for expected composition when direct drilled and 22 kg N/ha/yr for expected composition when broadcasted.

Mating Benchmarking Project

- Continue with a focus on our reproductive performance by focusing on:
- Transition cows ad lib silage for OAD cows for first 10 days of lactation, or until rumination criteria is met.
- Body condition score (BCS) targets for dry off and targeted winter feeding to achieve planned start of mating BCS targets.
- Early scanning based on data via wearables to implement our phantom cow strategy, see <u>reproduction project</u> for more information.
- Use of short gestation semen to allow a longer mating period (12 weeks), whist achieving a shorter calving period.

Lowdown on LUDF


- Season to date: review of winter and calving
- 24/25 season plan
- Preparing for mating
- 23/24 review including insights report
- 23/24 financial results and 24/25 budget

Feed & Pasture

- 1st round finished 21st September (23rd September last year).
- Better utilisation of feed this calving, primarily due to weather conditions (less wet weather events).
- We have fed an average of 2.2 kg DM silage/cow/day which is comparable to last season. We did
 feed a higher allocation during August which resulted in higher APC's than target, see springautumn farm cover tracker. We removed supplement mid-September to reduce APC's. We have
 now fallen slightly behind target and will add silage until we grow our demand.
- We have completed a full round of Ammo 31 at 80 kg/ha which is 24 kg N/ha.
- We are currently still in a feed demand deficit, with current growth rates of 50 kg DM/ha/day, versus cow demand of 67 kg DM/cow/day at peak numbers.
- We expect to hit balance date in the first or second week of October.

Feed Wedge - 02/10/2024

October Feed Budget & Grazing Rules:

- 564 cows on 160 Ha = 3.5 cows/ha.
- Target allocation = 19.0 kg DM/cow feed quality high at 12.2 MJ ME/kg DM for 1st round and
 12.5 MJ ME/kg DM for 2nd round.
- Residual target = 1,550 kg DM/ha.
- Demand = 67 kg DM/ha.
- Pasture required = demand x round length.

Current round length - 23 day rotation on 160 ha

			Total Diet	19	kgDM		
Post-grazing	1550 kgDM/ha		Round length	23 days		Area	160 ha
		Pre-grazing		kgDM/cow	Supplement offered		m ² /cow
Herd	Cows	target	Area in round	offered	-kgDM/cow	ha/day	/day
1st Herd	529	3,090	150 ha	19.0	0.0	6.5	123
OAD	20	3,090	6 ha	19.0	0.0	0.2	123
Sick/lame cow	15	3,090	4 ha	19.0	0.0	0.2	123
Total	564			19.0	0.0	7.0	

First Round

Lincoln Univsersity Dairy Farm

Sample Date 22 August 2024

	Y	our san	nple
Paddock	S5	S1	Average
MJ ME/kg DM	12.16	12.29	12.23
Dry Matter %	17.20	13.60	15.40
Protein % DM	21.87	21.46	21.66
NDF % DM	44.82	40.52	42.67
ADF % DM	22.56	21.68	22.12
WSC % DM	17.04	19.78	18.41
OM%	91.54	91.14	91.34
Digestibility % (DMD)	80.05	81.31	80.68

Second Round

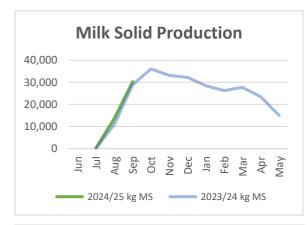
Lincoln University Dairy Farm

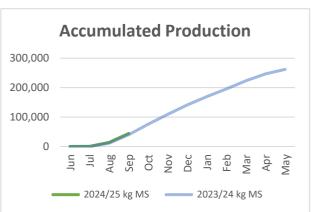
Sample Date 25 September 2024

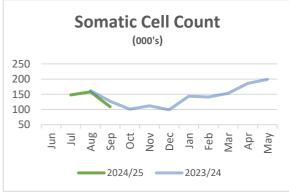
		Your	sample	•
Paddock	S8	S4	N9	Average
MJ ME/kg DM	12.07	12.62	12.78	12.49
Dry Matter %	16.80	20.60	18.20	18.53
Protein % DM	26.07	22.20	21.31	23.19
NDF % DM	36.91	38.95	38.27	38.04
ADF % DM	19.48	19.58	19.01	19.36
WSC % DM	15.49	22.69	25.13	21.10
OM%	89.56	91.65	92.56	91.26
Digestibility % (DMD)	81.25	83.08	83.27	82.53

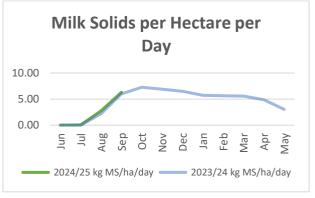
Milk Production

Milk Production for the season has started off extremely well. We are currently sitting 11% ahead STD. This is due to an early start with 150 calved by end of July. From mid-August, total cows calved are comparable between this season and last. Per cow performance STD has been strong and are currently sitting at close to 2.13 as of last week.


Milk Production to September


Date	Litres	2024/25 kg MS	Variance	2023/24 kg MS	Total kg MS	kg MS (%)	Avg SCC
September	330,893	30,282.0	5.0% ↑	28,827.1	44,175.0	9.15	109
August	143,217	13,610.9	24.0% ↑	10,979.9	13,893.0	9.50	158
July	2,875	282.3	-		282.0	9.82	148
Total	476,985	44,175	11.0% ↑	39,807.0			


Calving Rates & Per Cow Production


2023/24	2-Aug-23	9-Aug-23	16-Aug-23	23-Aug-23	30-Aug-23	6-Sep-23	13-Sep-23	20-Sep-23	27-Sep-23	4-Oct-23
Cows milking into vat	0	144	261	315	416	473	507	517	534	542
Cows milking NOT into vat	80	29	33	59	34	26	8	14	6	9
Total Cows Milk	80	173	294	374	450	499	515	531	540	551
Milk Production per cow (kg MS/cow/day)					1.87	1.81	1.92	1.94	1.99	2.05

2024/25	31-Jul-24	7-Aug-24	14-Aug-24	21-Aug-24	28-Aug-24	4-Sep-24	11-Sep-24	18-Sep-24	25-Sep-24	2-Oct-24
Cows milking into vat	116	139	270	323	394	460	500	521	531	
Cows milking NOT into vat	34	59	36	57	40	32	23	14	15	560
Total cows in milk	150	198	306	380	434	492	523	535	546	560
Milk Production per cow (kg MS/cow/day)	1.22	1.21	1.52	1.79	1.78	1.83	1.87	2.03	2.08	#DIV/0!

Regrassing & Cropping

• Paddock S6 (7.5ha) is scheduled to be regrassed in mid to late October. This has been an annual (part of our plantain pure sward strategy) and will be sown with cultivars: Forge (tetraploid hybrid ryegrass),

Kotuku & Ruru (white clover) and Ecotain (plantain).

• Paddock N11 (6.45 ha) will be regrassed in mid-November, also with the above cultivars.

Fertiliser

LUDF's Nitrogen fertiliser strategy is to use a higher rate of N in early September and through to October to get an improved response rate and encourage greater vegetative growth during the seed head phase of pastures, which would in turn drive a higher quality pasture into weeks 5-9 of mating. We have noticed that LUDF has a reduced conception rate during this period, likely due to feed quality as we are all grass at this stage. Last season we did see an improvement and we are interested in seeing if we can repeat the gains we achieved in our reproductive performance.

Time	Rate	Product	kg N/ha
Early September	80	Ammo 31	24
Late September	65	Urea	30
October	65	Urea	30
November	55	N-Protect	25
December	43	N-Protect	20
January	43	N-Protect	20
February	43	Urea	20
March	43	Urea	20

Total kg N/ha 188

Stock Reconciliation

Wintered cows 583 cows

Peak milk cows 564 cows expected as at 2/10/2024

Winter losses 2 deaths, 8 involuntary culls, 6 culls – 16 or 2.7%.

Industry loss targets:

2% - great result, low disease, good transition etc.

3% - average / acceptable.

4% - look for disease issues, cows identified as calved?

5%+ - getting too high, may have disease on the farm (Johne's / BVD). Need to survey to confirm what is causing problems.

Calves:

AB Calves 212 – DNA to be completed

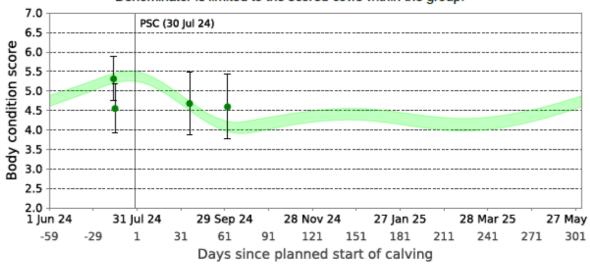
Beef Calves to Sell 43

SIDDC has challenged LUDF to reduce our replacement to 15% replacements. This equates to 88 reared post weaning, from our wintered cow numbers. We will sell the balance of dairy heifers and beefs clave post weaning. This strategy is aimed to reduce our cost structure and our greenhouse gas emissions from our system.

2024/25 Feed Budget

Notes to feed budget:

- Assumption of 80% silage utilisation. Total silage demand is 196t DM which equates to 349 kg DM/cow (milkers).
- Assumption of 90% pasture utilisation, which takes total supplement to 215t DM, which equates to 385 kg DM/cow (milkers).
- Dry cow silage requirement is 12.5t DM which equates a total supplement requirement of 227.5 t DM, which equates to 406 kg DM/cow (total).
- We have budgeted 322t of supplement for milkers and dry cows in our financial budget.

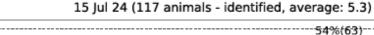

2024/25 Feed Budget

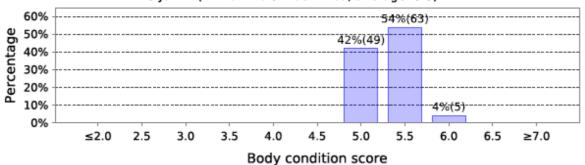
FarmRight Investing Sustainably													
LUDF													
Start date 1-Jun-24	Period start	1-Jun	1-Jul	1-Aug	1-Sep	1-0ct	1-Nov	1-Dec	1-Jan	1-Feb	1-Mar	1-Apr	1-May
Total days	365	30	31	31	30	31	30	31	31	28	31	30	31
Effective grazeable area (ha)	160.0	160.0	160.0	160.0	160.0	152.5	145.0	152.5	160.0	160.0	160.0	160.0	160.0
Remove or add area	157.5					-7.5	-15	-7.5					
Food demand													
יייי אבווומווח	ľ	ď		200	ì	3	-	1					000
Total cows on farm Cows Calving (No. in each period)		0	162 106	331 434	556 40	200	564	564	564	564	559	559	480
Cows dried off/culled (last day of period)			2	2	10	2				2		62	480
Average milking cows			23	321	925	995	564	564	564	564	559	559	480
Intake dm/day	17,368		15.0	17.0	17.5	18.0	18.0	17.5	17.5	17.0	16.5	16.0	16.0
Total feed demand /ha	17,756	0	5	34	61	29	70	65	62	09	58	26	48
Stocking rate (cows equiv./ha)		0.0	1.0	2.1	3.5	3.7	3.9	3.7	3.5	3.5	3.5	3.5	3.0
		, s	kgs dm/ha/day	day									
Pasture growth	17,840	15	15	16	42	89	62	75	73	63	28	52	33
Total milking cow supplement	289	289 kgDM/cow											
Total supplement	163,112 kgDM	(gDM				Suppler	nents fe	d per da	Supplements fed per day in each period	period			
lement	Intake/cow/day		2.5	2.0	3.5						1.0	2.0	
Baleage bales	544	0.0	0.4	5.4	6.5	0.0	0.0	0.0	0.0	0.0	1.9	3.7	0
kgDM/day fed	163,112	0	133	1,605	1,946	0	0	0	0	0	529	1,118	0
Total feed supply kgDM/ha/day	18,859	15	15	26	54	89	79	75	73	63	61	29	33
	•												
Feed utilisation		100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Area removed for silage /baleage							20	30	30				
Total silage/baleage made (kgDM)	130,000	0	0	0	0	0	34,000	51,000	45,000	0	0	0	0
Silage/baleage made (kgDM/ha/month)		0	0	0	0	0	234	334	281	0	0	0	0
Total silage	Total silage made/ha/day	0	0	0	0	0	80	11	6	0	0	0	0
Pasture cover													
Cover change kgDM/ha/day	254	15.0	10.5	-8.1	-6.7	1.2	1.2	-0.5	2.2	2.7	3.6	2.9	-15.2
Predicted closing pasture covers	1,900	2,350	2,674	2,424	2,224	2,261	2,297	2,281	2,350	2,425	2,538	2,625	2,154

Body Condition Score

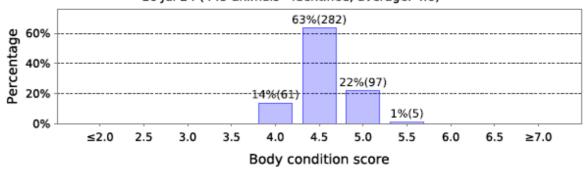
Animal group: Numbered (Tagged) Animals Planned start of Calving: 30 Jul 24

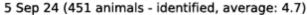
Denominator is limited to the scored cows within the group.

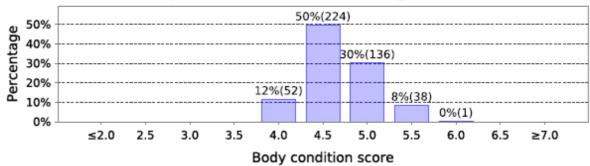


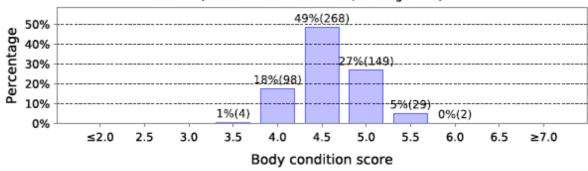

Optimal herd average (including heifers).

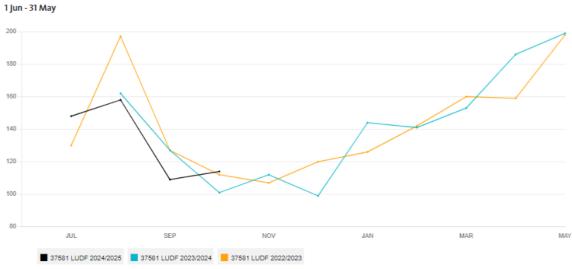
95% of animals lie within this range








16 Jul 24 (445 animals - identified, average: 4.6)


1 Oct 24 (550 animals - identified, average: 4.6)

Animal Health

- This season has been a fairly good season, with low incidence of metabolics and RFM's, however we have had an increase in mastitis.
- Last season, at dry off, we did culture 23 of our high SCC cows and did find Staph aureus. This did change our dry off strategy which resulted in using longer active dry cow therapy on high SCC cows and supported with teat seal on the balance of our herd.
- We have been monitoring our SCC and do strip every cow over calving to help identify clinical cases.

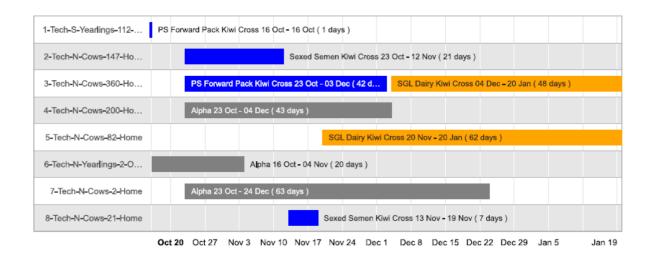
SCC

- Premating blood results:
- Copper and selenium look good.
- Some B12's were low, therefore will administer B12 prior to mating.
- Pooled iodine was also low, however this only indicated intake and not storage, however we will increase potassium iodine in the dosatron to ensure this isn't a limited factor through mating.

Animal ID	Serum B12 * pmol/L	Serum Copper µmol/L	Serum Selenium nmol/L	Inorganic lodine * μg/L
164	97	11.0	661	
474	71 L	11.0	806	
45	64 L	9.0	879	
4011	100	8.0	838	
142	83	10.0	844	
204	65 L	10.0	774	
356	113	8.0	530	
69	92	10.0	697	
332	124	10.0	946	
POOLED SERUM				33.0 L
Mean	90	9.7	775	33.0
Adequate Range	83 - 368	7.0 - 20.0	140 - 2000	45.0 - 220.0
Regional Trend	L 15% A 83% H 2%	L 1% A 98% H <1%	L 1% A 98% H 1%	

Mating

LUDF has remarkedly improved their not in calf rate (NICR) form a historical 18-20%, to 9% and 7% consecutively, for the last two season. The keys changes that have been made are:


- Mating length of 12 weeks, with the use of short gestation semen. This results in a calving spread of 10 weeks.
- Use of technology to identify heats and monitor cow activity, or inactivity.
- Phantom scanning with data we have implemented early scanning to confirm if cows held to inseminations, for those that have not, we intervene with progesterone.
- We have calculated the improvement in our NICR of 9% (after embryo losses).
- 4.2% improvement of in calf rate was achieved from extending mating length.
- 3.4% improvement of in calf rate was achieved from use of data and intervention.
- 1.4% improvement of in calf rate was achieved to improved performance like improved BCS, transition and energy levels over mating.

2024 Mating Plan

This year's plans is a 12 week AI period.

This season we will use:

- 4 weeks of sexed semen KX to top 30% of herd (increased by 1 week from last season).
- 6 weeks of forward pack KX to middle 30% of herd.
- 6 weeks of beef to the bottom 40% of herd.
- Short gestation semen from week 6 to week 12.

Heifer Mating Programme

Due to lower results in sexed semen in our heifers, we have decided to pause the sexed semen programme and AI to forward back only for 1 day and follow up with bulls for 9 weeks.

Early Scanning, Phantom Cows & Prostaglandin

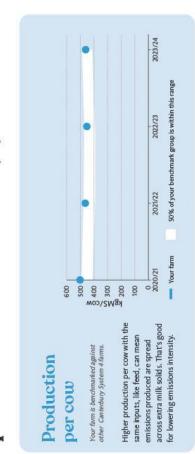
Early scanning was and will be completed every 10-14 days through December to early January. Final herd scan to be 5 weeks after mating, early February. Our results have indicated that an additional 3.4% cows were in calf with combining the collar and short gestation technologies. LUDF adopts

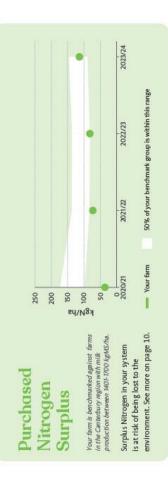
The data from the collar technology was used to identify "Phantom Cows". These are cows that have cycled, have been inseminated and failed to get in calf, and then failed to cycle again. These animals will show up on the collar information pages as in calf. These cows identified with the collar technology, are scanned by the vet to confirm if they are pregnant or not. Scanning takes place 28-35 days after the mating. Cows that are not pregnant are administered a PG dose and blanket inseminated 3 days later.

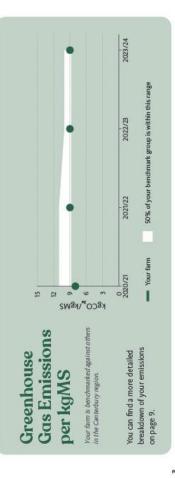
A total of 42 cows were given a PG based on identifying them as phantom cows with use of collar technology, 4 cows received 2 treatments after not responding to their first treatment. Cows were scanned every 10-14 days. 68% of these cows were determined as pregnant in the final scan. This intervention could also be achieved with tail paint or other heat detection such as Kamars. However, it would come with some difficulty and likely have a high risk of inaccuracy, i.e. it would require very good observation and record keeping.

See <u>reproduction project</u> for more information.

Our team

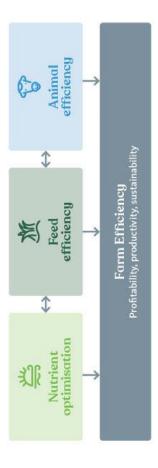

- Winter and Spring 2024 completed with 4 full-time staff.
- No Casual staff.
- Staff roster 5 days on, 2 days off all season.
- Peter 6 days on, 1 roster off over calving (in theory spring...), aim to move to 5 days on, 2 days off.


Farm Insight's Report


Your farm's big picture view

Success looks different to everyone.

By looking at key trends over time,
you can start to build a bigger picture
of sustainability on your farm.



The farm efficiency opportunity

Operating an efficient farm is about getting the most out of everything you're putting into your system.

What are the options for your farm?

Every farm is different, depending on your system, goals, and unique way of faming. Based on your insights, here's a snapshot of how your farm compares to others.

	Further info (pg)	Further Benchmark Your farm Info group 23/24 (pg) average season	Your farm 23/24 season	High High opportunity >>>>>> performer
Nitrogen fertiliser efficiency (kgDM/kgN)	5	92	82	haman haman haman haman haman l
Homegrown feed (tDM/ha)	5,6	14.4	15.0	
Feed converted to milk (%)	9	95	95	hammen that O the many that the
Production per kg liveweight (%) 6	9	96	100	F
6-week in-calf rate (%)	7	02	К	
Not in-calf rate (%)	7	14	7	
Somatic cell count (cells/ml)	80	139,532	134,832	ppp
Mastitis (%)	00	12	20	
Lameness (%)	00	9	80	

^{*}the benchmark group for Homegrown feed is the same as that used on page 5 of the report

Nutrient

the fertiliser you're using? Optimised use can Are you getting the best growth response to save costs, and reduce loss and wastage.

optimisation

Your farm's nitrogen fertiliser conversion efficiency

This data shows how efficiently the nitrogen you're applying is converted into feed.

Your farm's N-fertiliser efficiency

Your farm	is applying	182	legN/ha
Your farm is	eating	15.0	tDM/ha

efficiency is ertiliser

Efficiency opportunity The top 20% of farms in Your nitrogen

Pasture and Crops Eaten (tDM/ha)

0

If you could increase your efficiency by 10%, you could harvest 16.5 tDM/ha your region are achieving fertiliser efficiency of

0.911 kgDM/kgN

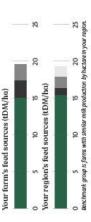
Opportunity: If you grew more feed from the same nitrogen fertiliser

2.2% kgCO, e/kgMS $\bigcap 18$ kg/KS/cou

\$78,138

What's the next step?

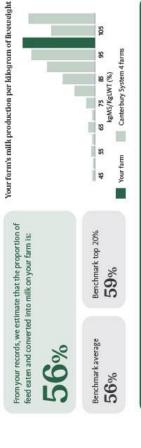
- effluent, pasture, cropping, soil and irrigation. Consider factors like fertiliser management,
 - Scan this QR code for DairyNZ's nitrogen resources to learn more.
- Consult your Sustainable Dairying Advisor, or a farm advisor, for personalised advice.



efficiency

balance you can manage costs and ensure quality of homegrown feed, and using feed is converted efficiently into milk. supplementary feed? With the right How are you maximising yield and

Farm efficiency


Your feed sources

Feed sources	Your farm	four farm Your region
Pasture and crops (grown on farm)	15.0 (77%)	15.0 (77%) 15.4 (80%)
Pasture and crops (imported to farm) 2.4 (12%)	2.4 (12%)	1.0 (5%)
Grazing off (ind. wintering)	22 (17%)	15(8%)
All other feeds	0.0 (0%)	1.4 (7%)

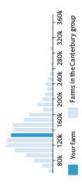
How much of your feed eaten is converted into milk?

Benchmark group is farm system by region. Your farm's average herd liveweight is assumed as 460kg based on your breed mix.

Based on a 1% increase in the proportion of feed converted to milk, you could achieve:

What's the next step?

- Consider factors like cow health and quality (page 7 and 8 of this report), or feed type and quality. Scan this QR code for DairyNZ's feed
- Consult your Technical Sales Rep, farm consultant, or nutritionist for personalised advice.


efficiency Animal

Somatic cell count

production to fight off the infection - research has shown indicate some cases of sub-clinical infection are present there's a 2.1% loss in production for every doubling of Bulk somatic cell counts (SCC) over 100,000 cells/ml in the herd. Animal energy is then diverted from milk somatic cell count over 100,000 cells/ml.

Factors like infection and lameness can cost Your herd's health and condition are key to the overall efficiency picture on your farm. time, money and cow productivity.

Your farm's annual average somatic cell count 2023/2024

Opportunity: If you reach 100,000 cells per ml

1 0.5% kg 00.2 s/kg MS

\$18,500

Mastitis & lameness

Mastitis and lameness are both painful for affected cows, and can impact production and performance.

Your farm's lameness cases as % of peak cows 2023/2024

Your farm's mastitis cases as % of peak cows 2023/2024

24% 28% 12% 16% 20% All Fonterra farms 4% 8% 0% 4% 8 28%

Estimated cost of lameness for your farm (\$250/case) \$11,750

Estimated cost of mastitis for your farm (\$150/case)

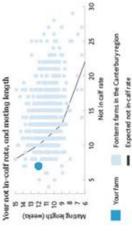
\$17,400

4% 8% 12% 16% 20% 24%

Your farm All Fonterra farms

What's the next step?

- Consider working with a vet to investigate lameness or mastitis issues.
- Refer to the SmartSAMM guidelines on the DairyNZ website for more information on managing mastitis.
 - Scan this QR code to book a Fonterra Milk Quality Improvement visit for advice.

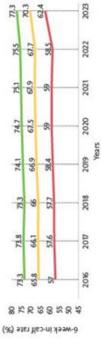

efficiency Animal

Reproductive performance is key in a seasonal calving system. Cows that cycle earlier will have more opportunities to conceive, and more days in milk the following season.

Farm efficiency

Reproductive performance

Your 6-week in-coff rate; 75%



Reproductive performance over time

Fonterra farms in Canterbury region

Your farm

40% 45% 50% 55% 60% 60% 70% 75% 80% 85%

Regional average

- Bottom quartile - Upper quartile

Canterbury Farms

0.3% насожнам If your in-calfrate reached \bigwedge 2 have

↑ \$10,482

For a herd your size with your 6-week in-calf rate, reaching the industry goal of 78% could mean the

%87

What's the next step?

- Consider early/dated pregnancy testing which is needed to properly assess your farm's reproductive performance.
- Scan this QR code for DairyNZ's InCalf resource.
- Consult your breeding company or vet for personalised advice.

Emissions

Your farm is benchmarked against Canterbury farms Your on-form emissions

per kgMS. Each farm has a unique opportunity

· it's up to you and your focus.

But they're also good for reducing emissions

Even the smallest on-farm efficiency gains can boost profitability and productivity.

and carbon removals. These aren't captured in the data below. farming activities. There are also other things that influence your farm's footprint - things like peat soil, land-use change This data shows the emissions that are created from your Other Carbon Dioxide Benchmark Nitrous Oxide 2022/23 Your farm 2020/21 Methane 2 9

Emissions (kgCO_se)/kgMs 9. Methane (biological) Dairy herd 8.48 Replacements 0.88 Effluent 0.59 Nitrous Oxide (biological) Livestock 0.49 Fertiliser 0.44 Manure and soil 0.11 Carbon Dioxide (non-biological) 0.11 Imported feed 0.11	9		William Delical	
(cal)	Emissio	ns (kgCO ₂ e)/ kgMs	9.3	10.30
g(ca))	Methan	e (biological)		
gical)	Dalry	herd	5.40	5.50
gical)	Repla	cements	0.80	060
gical)	Efflue	int	020	0.50
Acres in the	Nitrous	Oxide (biological)		
220 22	Lives	tock	0.90	0.90
	Ferti	Iser	0.40	0.40
125	Manı	ire and soil	0.10	0.10
	Carbon	Dioxide (non-biologica	0	
	Impo	rted feed	0.10	0.80
Fertiliser 0.4	Ferti	Iser	040	0.40
xide Other 0.7	Othe	_	0.70	0.80

Where can I find more information?

- Nutrients, page 5 of this report Nitrous Oxide Animals, pages 7-8 of this report
 - Emissions booklet, pages 20-26
- Emissions booklet, pages 27-34
- Emissions booklet, pages 35-40

Nutrients, page 5 of this report

Carbon Dioxide

Feed, page 6 of this report

We've shifted to a more accurate GHG model

from your Farm Dairy Records. You can find out more about this switch by scanning this QR code: Lifecycle Assessment (Ag:LCA). This is based on more detailed information about your farm Your emissions are now calculated using a model from AgResearch called the Agricultural

What's the next step?

Scan this QR code for the emissions booklet to read more.

- Consider exploring the reading outlined under each gas type to understand where there are opportunities for your farm.
- Consult your Sustainable Dairying Advisor for more personalised advice.

Water quality

Managing risks for your farm

Potential water quality risks are well-known by the dairy farming community in New Zealand. Farmers have taken several actions from fencing off waterways to carrying out riparian planting to help manage water quality.

Your farm's Nitrogen Risk Scorecard

This data summarises risks for nitrogen loss on your farm. Your farm's full Nitrogen Risk Scorecard can be found online using the QR code here:

Cropping & Cultivation

A Irrigation

	l	
Peed		
A P		
£		

Purchased Nitrogen Surplus 182 + 46 - 114 = 114 givina kgivina Purchased Nitrogen Surplus 23/24 season

Refer to page 3 for your PNS trend over time.

complete actions in your Digital Dairy Diary or contact A Fonterra Farm Environment Plan is tailored to the risks and practices on your farm. You can review or

What's the next step?

your Sustainable Dairying Advisor for more support.

Good disease management on-farm is essential for protecting your herd. Flow-on benefits can include reduced treatment New Zealand is naturally free of many pests and diseases that exist in other parts of the world. But that means new and invasive species could threaten our unique biodiversity - just take mycoplasma bovis and fall armyworm for example. inputs, maximised genetic investment, better milk production and lower feed inputs.

Biosecurity measures that protect against Bovine ViaralDiarrhea (BVD) can also protect your herd against other harmful

BVD management opportunity

The estimated cost of BVD in a negative herd: \$22.22 x peak cow numbers/year.

The cost of BVD in a positive herd is much higher with negative impacts on conception as well as

reduced production.

What's the next step?

Consult your local vet about disease management, include BVD in your this QR code to read more about Animal Wellbeing Plan, and scan oiosecurity on our website.

	Units	21/22	22/23	23/24
Dairy farm effective area	Ha	160	160	160
Peak cows (maxImum numbers)	Cows	558	547	568
Stocking rate (dairy cows)	Cows/ha	3.5	3.4	3.6
Production	kgMS	258,851	247,291	261,894
Production per ha	kgMS/ha	1,618	1,546	1,637
Average somatic cell count	Cells/ml	142,485	140,252	134,832
Nitrogen fertiliser applied per ha	kgN/ha	144	158	182
Nitrogen fertiliser conversion efficiency	kgDM/kgN	109	95	82
Pasture & crop eaten (homegrown feed)	tDM/ha	15.7	15.0	15.0
Feed converted to milk	%	22	22	99
Production per kg liveweight	%	100	86	100
Imported feed fed	tDM	418	321	455
Imported supplement per cow	tDM/cow	0.7	9.0	8.0
Production per cow	kgMS/cow	464	452	461
Purchased Nitrogen Surplus	KgN/ha	73	82	114
Greenhouse Gas Emissions per kgMS	kgCO ₂ e/kgMS	9.1	9.1	9.3
Mastitis cases	Cows	88	22	116
Lameness cases	Cows	147	92	47
6-week In-calf rate	%	,	,	75
Not in-calf rate	%			7
Mating length	Weeks	e	•	12
Total biological methane	kg/ha	430	416	436
Total biological nitrous oxide	kg/ha	7	7	8

LUDF Finances

The 2023/24 season continued to have a high on farm inflation.

Key Points:

- 23/24 season LUDF had increased costs primarily with Feed and R&M.
- Total operating costs was \$1.532 million.
- Total operating costs was \$5.85/kg MS, budget was \$5.53 /kg MS.
- Able to increase voluntary culls due to improved reproductive results.
- Per cow production very close to our target for 10-in-7 6.2% drop from TAD.
- Calf sales have diversified income stream and reduced non replacement calves.
- Will continue with calves sales this season, we have an increase in surplus heifer replacement (sexed semen) and beef sales this season.
- Grazing to reduce due to less heifers reared, both as R1's and R2's.
- Feed made and purchased expect to be back to budget this season.
- Animal health change in dry cow strategy due to Staph aureus in herd and BVD vaccination for all stock, including youngstock and sale stock.
- R&M to be monitored with a capex plan in place, however our infrastructure is ageing.

23/24 Actual Finances

Peak Cows 560 cows Total 261,894

 Per cow
 467.6 kg MS/cow

 Per Ha
 1,637 kg MS/ha

 Milk Price
 \$7.83 / kg MS

Farm Operating Expenditure \$5.85 / kg MS
Total Operating Expenditure \$1,531,967
EBIT \$644,961 (\$4,031 / ha)

24/25 Budget Finances

 Peak Cows
 560

 Total
 266,000

 Per cow
 475 kg MS

 Per Ha
 1,663 kg MS

 Milk Price
 \$9.00 / kg MS

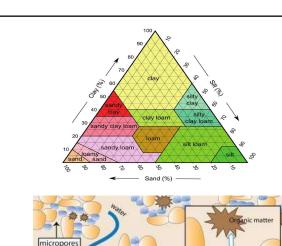
Farm Operating Expenditure \$5.50 / kg MS
Total Operating Expenditure \$1,464,257
EBIT \$1,099,183 (\$6,870 / ha)

LUDF Finances

LUDF 2023/24 Actuals		LUDF 2024/25 Budget								
560 \$/cow	160 \$/ha	261,894 \$/kgMS	2023/24 \$	Description	2024/25 \$	266,000 \$/kg MS	160 \$/ha	560 \$/cow	Notes	
				Income						
\$16.65	\$58.26	\$0.04	9,321	Sales - Bobby Calves	7,827	\$0.03	\$48.92	\$13.98	270	
\$9.99	\$34.97	\$0.02	5,595	Sales - R2 Heifers	7,000	\$0.03	\$43.75	\$12.50		
\$0.00	\$0.00	\$0.00		Sales - Bulls		\$0.00	\$0.00	\$0.00		
\$121.56	\$425.46	\$0.26	68,074	Sales - Cows	65,546	\$0.25	\$409.66	\$117.05	101	
\$0.00	\$0.00	\$0.00		Sales - Surplus heifer calves	67,568	\$0.25	\$422.30	\$120.66	123	
\$77.33	\$270.66	\$0.17	43,306	Sales - Beef calf Sales	21,500	\$0.08	\$134.38	\$38.39	43	
\$225.53	\$789.35	\$0.48	126,296	Total Stock Sales	169,441	\$0.64	\$1,059.00	\$302.57		
\$3,661.84	\$12,816.45	\$7.83	2,050,632	Sales - Milk Solids Current Season	2,394,000	\$9.00	. ,	\$4,275.00		
\$0.00	\$0.00	\$0.00		Sales - Co-operartive Difference		\$0.00	\$0.00	\$0.00		
\$0.00	\$0.00	\$0.00		Sales - Feed, Silage, Other Crops		\$0.00	\$0.00	\$0.00		
\$0.00	\$0.00	\$0.00	2 176 020	Income - Other TOTAL REVENUE	2 502 441	\$0.00	\$0.00	\$0.00		
\$3,887.37	\$13,605.80	\$8.31	2,176,928	TOTAL REVENUE	2,563,441	\$9.64	\$16,021.50	\$4,577.57		
				Expenses						
\$497.16	\$1,740.1	\$1.06	278,412	Labour - Perm & Fixed Term	301,000	\$1.13	\$1,881.25	\$537.50		
\$15.49	\$1,740.1	\$0.03	8,674	Other labour: ACC, Super, H&S, Clothing	10,000	\$0.04	\$62.50	\$17.86		
\$512.65	\$1,794.3	\$1.10	287,086	Total Labour Expenses	311,000	\$1.17	\$1,943.75	\$555.36		
\$131.08	\$458.8		73,404	Animal Health	81,498	\$0.31	\$509.37		DNA Calves	
\$130.16	\$455.6		72,891	Breeding	73,297	\$0.28	\$458.11	\$130.89		
\$20.26	\$70.9	\$0.04	11,345	Dairy Shed Operating Expenses	11,767	\$0.04	\$73.55	\$21.01		
\$39.41	\$137.9	\$0.08	22,071	Electricity - Other	22,000	\$0.08	\$137.50	\$39.29		
\$116.55	\$407.9	\$0.25	65,268	Electricity - Irrigation	66,000	\$0.25	\$412.50	\$117.86		
\$437.90	\$1,532.7	\$0.94	245,225	Feed Made/Purchased	147,122	\$0.55	\$919.52	\$262.72	Purchased feed	
\$306.42	\$1,072.5	\$0.66	171,593	Grazing - Winter	170,892	\$0.64	\$1,068.08	\$305.16	Less stock	
\$36.24	\$126.9	\$0.08	20,297	Freight - Livestock	17,998	\$0.07	\$112.49	\$32.14	Less stock	
\$196.40	\$687.4	\$0.42	109,985	Youngstock Grazing	86,589	\$0.33	\$541.18		Less stock	
\$85.42	\$299.0	\$0.18	47,834	Calf Rearing	63,250	\$0.24	\$395.31		More reared	
\$128.27	\$448.9	\$0.27	71,832	Fertiliser -Nitrogen	73,186	\$0.28	\$457.41	\$130.69		
\$54.82	\$191.9	\$0.12	30,700	Fertiliser - Other	36,741	\$0.14	\$229.63	\$65.61		
\$33.55	\$117.4	\$0.07	18,788	Fertiliser - Spreading	19,547	\$0.07 \$0.04	\$122.17	\$34.91		
\$21.33 \$39.39	\$74.7 \$137.9	\$0.05 \$0.08	11,946 22,057	Seed Contractors - Regrassing	10,800 22,125	\$0.04	\$67.50 \$138.28	\$19.29 \$39.51		
\$1.25	\$4.4	\$0.00	697	Weed & Pest Control	1,500	\$0.08	\$9.38	\$2.68		
\$32.87	\$115.1	\$0.07	18,409	Vehicle Expenses	18,160	\$0.07	\$113.50	\$32.43		
\$30.09	\$105.3	\$0.06	16,851	Vehicle - Fuel	15,000	\$0.06	\$93.75	\$26.79		
\$51.26	\$179.4	\$0.11	28,704	R&M - Land & Buildings	23,500	\$0.09	\$146.88	\$41.96		
\$46.09	\$161.3	\$0.10	25,811	R & M - Irrigation	25,000	\$0.09	\$156.25	\$44.64		
\$115.36	\$403.8	\$0.25	64,603	R & M - Plant, Machinery, Other	50,000	\$0.19	\$312.50	\$89.29		
\$15.20	\$53.2	\$0.03	8,515	R & M - Farm Houses	1,500	\$0.01	\$9.38	\$2.68		
\$1.03	\$3.6		579	Freight	500	\$0.00	\$3.13	\$0.89		
\$8.93	\$31.3		5,000	EcoPond	10,000	\$0.04	\$62.50	\$17.86		
\$11.79	\$41.3	\$0.03	6,600	Administration	13,000	\$0.05	\$81.25	\$23.21		
\$10.71	\$37.5		6,000	Consultant	12,000	\$0.05	\$75.00	\$21.43		
\$18.31	\$64.1		10,252	Fixed Charges - Rates	12,800	\$0.05	\$80.00	\$22.86		
\$17.14	\$60.0		9,599	Fixed Charges - Land Rent	9,600	\$0.04	\$60.00	\$17.14		
\$18.07 \$32.69	\$63.3 \$114.4	\$0.04 \$0.07	10,120 18,306	Lease - Techonology (Collars) DairyNZ Levy	24,983 13,300	\$0.09 \$0.05	\$156.14 \$83.13	\$44.61 \$23.75		
\$2,700.66	\$9,452.3	\$5.77	1,512,367	TOTAL FARM WORKING EXPENSES	1,444,657	\$5.43	\$9,029.11	\$2,579.75		
\$1,186.72	\$4,153.51	\$2.54	664,561	CONTRIBUTION PROFIT	1,118,783	\$4.21	\$6,992.39	\$1,997.83		
\$35.00	\$122.50	\$0.07	19,600	less East Block Adjustment - Support block	19,600	\$0.07	\$122.50	\$35.00		
\$2,735.66	\$9,574.79		1,531,967	Total Operating Expeneses inc East Block	1,464,257	\$5.50		\$2,614.75		
				Financial Ratios						
\$3,661.84	\$12,816.45	\$7.83	\$2,050,632	Milk Gross income	\$2,394,000	\$9.00	\$14,962.50	\$4,275.00		
\$225.53	\$789.35		\$126,296	Stock Gross income	\$169,441	\$0.64	\$1,059.00	\$302.57		
\$3,887.37	\$13,605.80		\$2,176,928	Total Gross income	\$2,563,441	\$9.64				
\$2,735.66	\$9,574.79	\$5.85	\$1,531,967	Less Farm Operating Expenditure	\$1,464,257	\$5.50		\$2,614.75		
\$1,151.72	\$4,031.01		\$644,961	EBIT	\$1,099,183	\$4.13		\$1,962.83		

_

Benefits – Reduced Operating Costs


Take Type	Head (m)	Irrigation cost (m3)	Irrigated area (ha)	Annual water use (mm/ ha)	Reduced water use through monitoring	Total Savings
Surface take	40	\$ 0.08	200	450	10%	\$ 7,261
>40 m bore	70	\$ 0.14	200	450	10%	\$ 12,706
>100 m bore	100	\$ 0.20	200	450	10%	\$ 18,152

Benefits – Increased Production

Crop	Irrigated area (ha)	Yield (tonne/ha)	ome (ha/ onne)	Increased yield from monitoring	Monitoring Benefit
Dairy	200	12	\$ 9,107	1%	\$ 18,214
Beef finishing	200	10	\$ 6,400	1%	\$ 12,800
Lamb finishing	200	10	\$ 5,250	1%	\$ 10,500
Forage crop	20	20	\$ 400	1%	\$ 1,600
Clover seed	20	0.9	\$ 5,000	1%	\$ 900
Ryegrass seed	20	1.8	\$ 3,000	1%	\$ 1,080
Carrot seed	20	0.2	\$ 50,000	1%	\$ 2,000
Potato	20	50	\$ 700	1%	\$ 7,000
Barley	20	8	\$ 450	1%	\$ 720
Wheat	20	11	\$ 450	1%	\$ 990
Maize grain	20	13	\$ 450	1%	\$ 1,170
Baleage	20	12	\$ 400	1%	\$ 960
Maize silage	20	21	\$ 300	1%	\$ 1,260

3

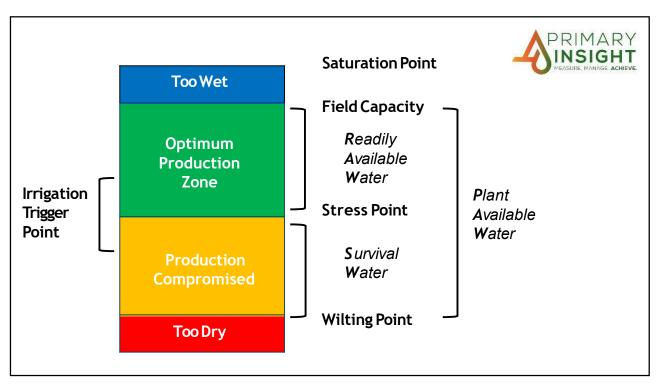
Soil

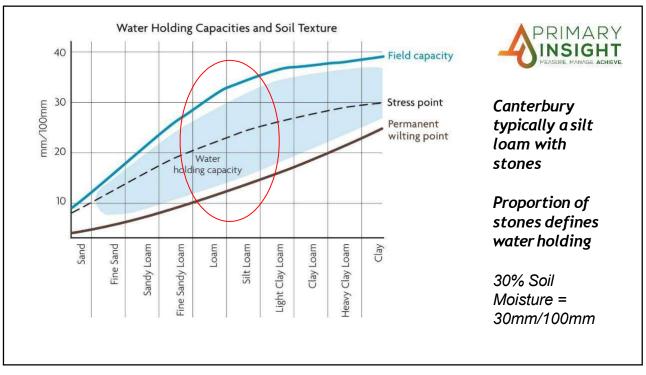
Solids

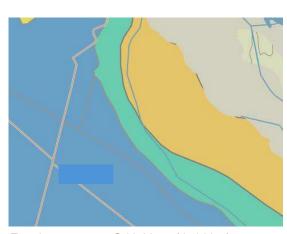
- Sand, Silt, Clay and Organic Matter
- · Defines soil characteristics

Holes

- Macro-pores = drains and airways
- Micro-pores = store water


Soil management is key


Poor cultivation, compaction and pugging greatly impact soil water availability

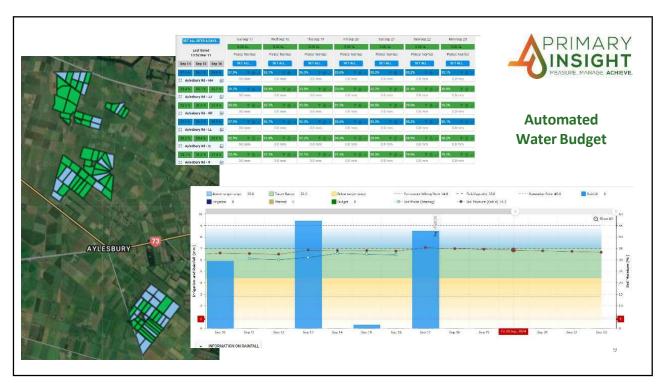

Dairy = Consider timing of irrigation and grazing to avoid risk of compaction

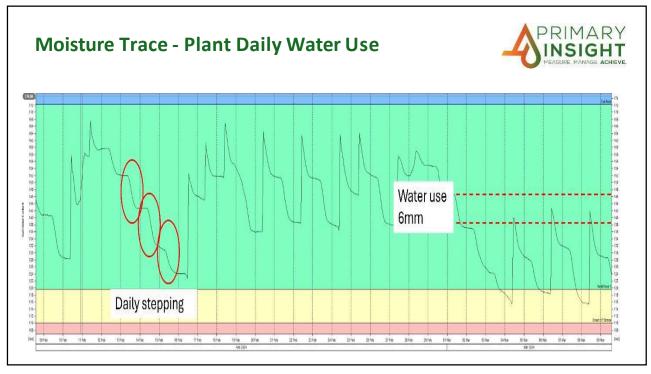
Avoid grazing within 24-36 hours of irrigation on shoulders

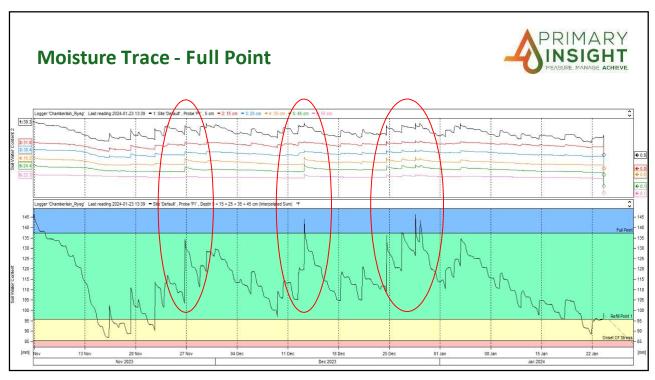
Δ

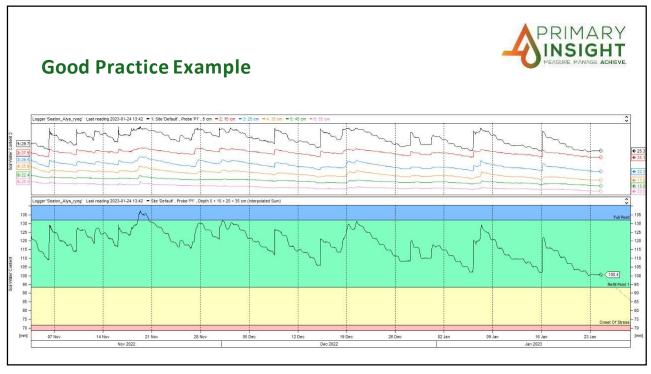

Templeton – stones @ 60-80 cm (dark blue) Eyre – stones @ 20-40cm (lightblue)

Pasture Fodder beet transition crop

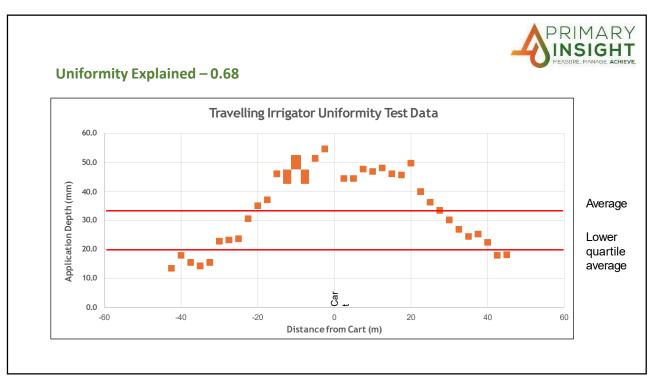

Probe Placement


Full circlepivot 5-part circlepivots Small area long lateral sprinklers




7

Method	Benefits	Considerations
Manual water budget	Low capital cost (if no weather station required) Easy solution if set up correctly Climate data can be used elsewhere	Daily records required Crop factor adjustment can be challenging Access to climate data (PET)
Automated water budget	Automated data entry (climate + irrigation) Whole of farm scheduling Automated reports Great solution if set up correctly	Moderate to high cost Set-up and annual fee (\$800 + \$2,900pa)
Scheduling service	Fit for purpose solution guaranteed On-going professional advice provided Flexibility to vary sites from year to year	Moderate cost (\$1,000 per site pa) Typically, only one reading per week One point on farm
Manual download probes	Real time (15 minutes) Lower cost (\$1,200 – \$1,800 + \$200 pa) Easy to read	Cost-effective option for cropping One point on farm Need to download data
Telemetered probes	Real-time (15 minutes) Options to connect into existing telemetry Easy to read	Moderate to high cost (\$3,000 + \$300 pa) One point on farm Telemetry needs to be setup and maintained



Bucket Test vs. Full Assessment

- Bucket Test quick and easy but does not allow identification of actual issues
- Assessment takes more time as includes pressure, flow, application depth & uniformity – allows actual issues to be identified
- Assessment ismore cost effective for older irrigators as enables troubleshooting if issues found

13

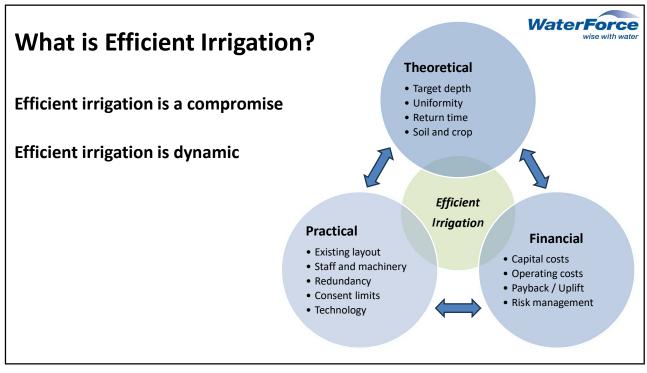
Sprinkler Pack Condition Key

- 10% capital cost but 70% of the performance
- Typical life of sprinkler pack = 10,000 hours
- Broken/ blocked regulatorsBroken/ blocked sprinklers
- Replace like with like
- Sediment an issue in some areas
- Corrosion now an issue as pivots
- Solution = manual (used regularly) or automatic flushing valves

16

Irrigation Development

Dan McLaughlin


Design Engineer at WaterForce Christchurch INZ Accredited System Designer INZ Accredited System Performance Assessor

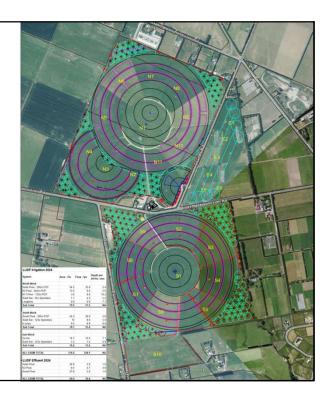
dmclaughlin@waterforce.co.nz

17

Irrigation & Effluent Design

Development work is undertaken to improve one or more of the following:

Applied Depth


- How much water is applied?
- How uniformly is water applied?
- Is this adjustable?

Application Intensity

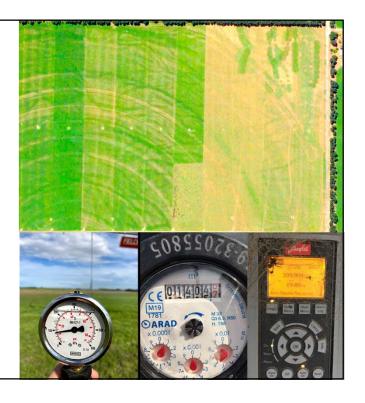
- How fast is water applied?
- Is this adjustable?

Return Time

- How often is water applied?
- Is this adjustable?

19

Maximising System Performance

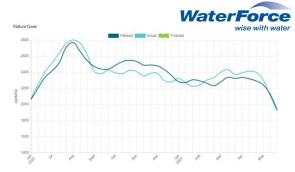

What is your biggest cost or setback with irrigation?

- Power or scheme costs
- Staff capability
- Reliability or maintenance
- System flexibility or complexity

Where are the physical losses?

- Identify Key Performance Indicators (KPIs)
- Test against KPI's
- What changes will deliver the maximum benefit for every \$ spent?

Use system evaluation to measure current performance vs optimum performance


Maximising System Performance

Examples for existing irrigators:

- · Adjusting pump or machine settings
- · Changes in operating procedure or training
- · Re-nozzling or re-packing machines
- Planned assessments, service and maintenance
- Automation and safeties

Identify, Implement, Reevaluate and Repeat

System evaluation is a tool to identify these opportunities for improvement

21

LUDF Recent Development Timeline

Between 2017 and 2024:

Irrigation

- 2 x Valley Pivots to replace original Zimmatic corner arm and sprinklers
- 2x Original pivot sprinkler packs replaced
- 22 Ha of long lines replaced with 182x solid set sprinklers 93% of Platform under automated spray irrigation
- 85% of Total farm area under automated spray irrigation
- Minimum return time for all irrigation ≤24 hours

Effluent

- Effluent area increased from 30 Ha to 61 Ha across 3x pivots
- Raw effluent screened with solids >1.5mm removed and stored
- Main effluent pump size reduced from 22kW to 15kW
- Applied depths reduced from ~8.0mm to 1.5mm
- Storage increased from 300m³ to 1,000m³

North pivot corner arm failure

2018

2019

2022

- N3 Pivot (4 Span) commissioned
- North pivot reconfigured and panel upgraded
- N11 Pivot (2 Span) commissioned
 - North pivot underslung span control automated
- North Block solid set (58x Sprinklers) installed
 - South Block solid set Stage 1 (47x Sprinklers)
 - Underslung systems installed on N3 and South Pivots
 - New effluent pond constructed
 - Solids separator and effluent pumping upgrade

• South Block solid set Stage 2 (78 Sprinklers) completed

Future Development

Current projects in design:

Irrigation

- Centre pivot to replace East Block hard-hose gun
- Centre pivot to replace S10 K-lines

Effluent

- EcoPond treatment for storage pond
- Next generation treatment

Future Technology Upgrades:

- Effluent proof of placement and diagnostics
- Remote machine diagnostics
- Machine learning and optimisation
- Original irrigation equipment end of life?
- Solar energy conversion?
- Data integration across platforms?

LUDF Presentation

Financial Markets

High level summary

Save Money

- Chasing production over costs
-) Being Efficient

Make Money

) How you spend your surplus

Manage Money

- Control the Controllables
-) Manage the Risks

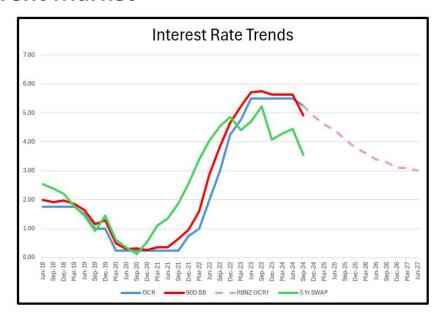
Governance

-) Banks perspective
- Borrowers Perspective

1

Disclaimer

• This presentation has been prepared solely for informational purposes. It has been prepared without taking account of your objectives, financial situation, or needs. Before acting on the information in this presentation, you should consider the appropriateness and suitability of the information, having regard to your objectives, financial situation and needs, and, if necessary seek appropriate professional or financial advice. We believe that the information in this document is correct and any opinions, conclusions or recommendations are reasonably held or made, based on the information available at the time of its compilation, but no representation or warranty, either expressed or implied, is made or provided as to accuracy, reliability or completeness of any statement made in this document. Any opinions, conclusions or recommendations set forth in this document are subject to change without notice and may differ or be contrary to the opinions, conclusions or recommendations expressed elsewhere by ASB Bank Limited. We are under no obligation to, and do not, update or keep current the information contained in this document. Neither ASB nor any person involved in the preparation of this document accepts any liability for any loss or damage arising out of the use of all or any part of this document. Any valuations, projections and forecasts contained in this document are based on a number of assumptions and estimates and are subject to contingencies and uncertainties. Different assumptions and estimates could result in materially different results. ASB does not represent or warrant that any of these valuations, projections or forecasts, or any of the underlying assumptions or estimates, will be met.


What's happening in the Financial Markets

- OCR reviews at 2pm today
- Markets try to second guess RBNZ
 - OCR reviews every 56 days (longer over Xmas)
 - 90BB reprice every 90 days out of step for 40 days
- Wholesale rates attempt to interpret interest rate direction
- Margin between OCR & 90D BB normally 20 points (0.20%), or higher
- Currently 90D BB is below OCR

3

Current Market

Save Money - Efficiency

Focus on production levels that achieve efficient production

Know your KPI's & Benchmark them

Income – milk production per cow - genetics

Expense - Feed utilisation, fertiliser use, animal health status

Recent Example

Per Cow Income \$4,000/cow Group Average \$4600/cow Opex/cow \$2100/cow Group Average \$3100/cow EBIT/cow \$1900/cow Group Average \$1500/cow

Key difference in cost – feed inputs

5

Make Money – Managing Surplus

Opportunity Cost – highest and best return

Payout has risen steadily, and costs slowed

Revise the Budget - live document

Compare actuals to forecast - variance

What to do with the surplus?

Average Dairy Debt \$19/kg x 7.5% = \$1.43/kg

Every \$1/kg of debt repaid = \$0.08/kg saved

Or

Alternate investment, say cup removers \$100,000

Labour saving say ½ unit = \$40k/ 200000kgs = \$0.20/kg

Manage Money – Manage Risk

Understand your breakeven point

How vulnerable is your business

Tools to Use

Mitigate upside risk

Key aspects

Income Opex Interest

7

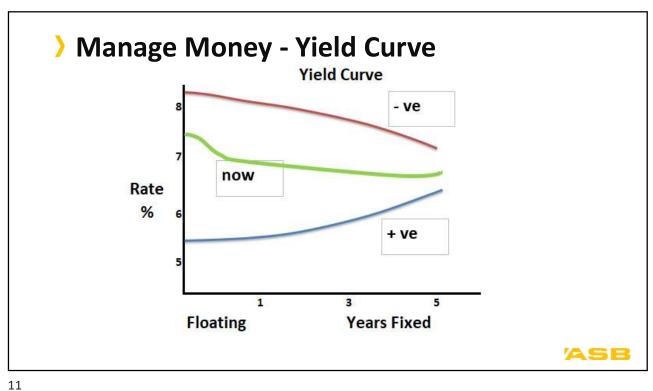
) Breakeven Point – derived from budget

Cash			Payout	per kg		
Surplu	s	6	6.5	\$7	7.5	8
	4.5	8000	52000	98000	156000	200000
	5	-20000	2000	22000	85000	148000
Costs	5.5	-61000	-18000	4000	55000	155000
per kg	6	-88000	-56000	-5000	14000	50000
	6.5	-120000	-98000	-55000	5000	80000
	7	-200000	-141000	-110000	-50000	5000

Manage Money – Control the Controllables

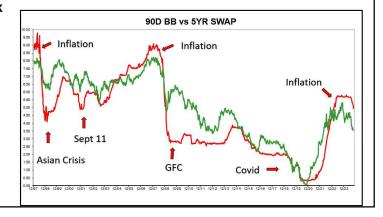
What variables can you manage?

- Income
 - Milk Price futures trading
- Expenses
 - Feed or Grazing contracts
 - Wages Contract milker
- Interest
 - Fixed Rates



9

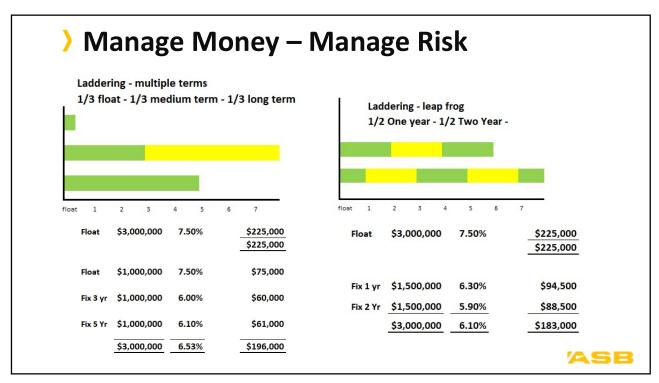
Manage Money – Milk Futures


		23/08/24		30/08/24	25/09/24	
		Fonterra	_	Futures	Fonterra	_
1	Sep-25	\$8.50	forecast	\$8.80	\$9.00	forecast
	Hedge	100,000	kgs	\$8.80	\$880,000	
		100,000	kgs	\$9.00	\$900,000	_
_		200,000	kgs	\$8.90	\$1,780,000	

Manage Money – Interest Risk

- Single biggest cost probably
- Creating certainty markets don't stay the same ever changing
- Unexpected "events" unsettle markets and have created swings
- Fixing rates to remove upside risk
- Do reduce downside gains
- Maintains steady cashflow

Manage Money – Manage Risk


- Long period at low rates complacency set in
- Steep sharp rate rise fixing not attractive
- Moving to lower rate environment opportunity to rethink
- Having a loan "strategy" rather than impulsive decision
- Hedging enables surety of cashflow known annual cost
- Averages the "cost of borrowing"

Tools

- Multiple fixed terms split debt maturities
- Forward Fixing lock future rate

13

Summary

- Cost of borrowing is trending down
- Biggest saving Efficiency . Track key KPI
- At \$9 should have a surplus spend wisely
- Manage Money risk measures
 - Income Milk Futures
 - Expenses Contracts
- Interest
 - Fixed Rates have a strategy

15

) Governance – Banks Point of View

Important factors;

- The background/experience of the individual partners
- · How has the partnership been created
- · What does the shareholder agreement cover
- Goals Are the Key expectation of the partners, are they aligned
- Time horizons initial term of the investment/commitment need 5yrs min
- How robust are the numbers budgets/returns/security/equity
- Level of indebtedness with more equity stronger position to pay dividends
- Dividend policy/expectation

) Governance – Borrowers Point of View

Things to consider – Glenn to talk to his experience

In order of consideration

- · Identify potential partners
- · Assess individual goals and aspirations do they align
- Key expectation of returns all shareholders
- What level of equity and gearing required to achieve that return
- Level of equity dictates the scale of farm (from cash available)
- · Key farm attributes; size, water cost/reliability, structural imps
- Cashflows and budgets to support the return- steady state

17

Governance – Borrowers

What are your expectations;

- ROI
- Dividend stream
- · Level of Equity
- Strategy/vision/focus
- Core farm attributes; location/improvements/irrigation/environmental

Shareholder Agreement to protect all parties

- Sunset clause
- Locked in clause
- Decision Process Governance in action
 - Dividend agreement
 - Capital reinvestment

ASB

) Governance - Borrowers

Pitch to Partners

Pitch to Bank

Know your position; equity/ indebtedness / cashflow

Ongoing Governance

- Governance training
- Governance in action
 - Engaged
 - Open to differing views
 - Diverse background

