

LUDF's progress on repro and flexible milking

Collar Fertility Overview Report LUDF 2022/23 vs 2023/24 Comparison April 2024

LUDF. Peter Hancox. 541 cows, 160 Ha farm, Lincoln.

Background

Fertility Focus 2021: Seasonal

Lincoln University The Manager (University Dairy Farm) Hancox

1 Overall herd reproductive performance

Report date:

Herd Code:

No of cows included:

Mating start & end date:

(based on A8 or pregnancy test data)

Duration of mating:

Duration of AB period:

These cows calved between:

Next planned start of calving:

PTPT:

29/03/23

BQCY

6/114

559

27/07/22

76 days

75 days

10/06/21 and 16/12/21

18/10/21 - 01/01/22

incal

FOCUS

Version 3.01

Dairynz≥

∆LIC

Farm System Changes from 2021/22 to 2022/23

SIDDC Repro Benchmarking Project

*Started in 2021/22 Season (so consistent across both years)

Flexible Milking

Background

Fertility Focus 2021: Seasonal

Lincoln University The Manager (University Dairy Farm) Hancox

1 Overall herd reproductive performance

Report date:

Herd Code:

No of cows included:

Mating start & end date:

(based on A8 or pregnancy test data)

Duration of mating:

Duration of AB period:

These cows calved between:

Next planned start of calving:

PTPT:

29/03/23

BQCY

6/114

559

27/07/22

76 days

75 days

10/06/21 and 16/12/21

18/10/21 - 01/01/22

incal

FOCUS

Version 3.01

Dairynz≥

∆LIC

SIDDC Repro Benchmarking Project

- Allflex Sensehub Collars
 - Enabled full season AB

Phantom Scanning (to reduce herd NICR)

_

 Longer mating length (enabled by short gestation semen)

3WICR 51% to 52%

6WICR 68% to 75%

Conception Rate 46% to 50%

> NICR 21% to 9%

BUT:24 late losses (between phantom & final scan) = 4.4% 18 days longer mating length

Lincoln University The Manager (University Dairy Farm) Hancox

1 Overall herd reproductive performance

Report date:

Herd Code:

No of cows included:

Mating start & end date:

(based on AB or pregnancy test data)

Duration of mating:

Duration of AB period:

These cows calved between:

Next planned start of calving:

PTPT:

28/03/24

BQCY

6/114

542

01/08/23

93 days

90 days

15/06/22 and 21/12/22

23/10/22 - 23/01/23

inca

FOCUS

Version 3.01

Dairy_{NZ}≥

End of Season Data Review

Veterinary Centre by the Big Blue Cross

www.vet111.co.nz | 0800 VET 111 | CLINICS Oamaru • Waimate • Palmerston • Glenavy • Omarama • Kurow • Ranfurly

Transition (Springers through to +10-14 DIM)

land C

Key Influence on:

- BCS Loss Post Calving
- Endometritis Rates
- Oocyte quality (and first service conception rate)
- Cycling Rates
- Mastitis / Lameness
- Metabolic
- Peak Production

Veterinary Centre by the Big Blue Cross

www.vet111.co.nz | 0800 VET 111 | CLINICS Oamaru • Waimate • Palmerston • Glenavy • Omarama • Kurow • Ranfurly

Daily Rumination Average by DIM (cf average 30-40 day farm rumination rate)

Transition Monitoring

www.vet111.co.nz | 0800 VET 111 | CLINICS Oamaru · Waimate · Palmerston · Glenavy · Omarama · Kurow · Ranfurly

Transition (Springers to Early Lactation)

Transition Rumination Rates:

2023

Rumination Activity

Mins/Day for Each Period

	ME	Wastage	kg of Feed	Multiplier	ME	Protein %	
Grass	10.5	10%	4	9.45	37.8	22%	SPRINGER
Crop (Break Fed)	12	15%		10.2		15%	
Grass Silage	11	25%		8.25		15%	
Maize Silage	11	25%		8.25		9%	
Grain	13	11%		11.57		11%	
In Shed Other	13	11%		11.57		28%	
PKE	11	20%		8.8		14%	
Crop (Lifted)	12	10%		10.8		10%	
Baleage	10	20%	6	8	48	15%	
Straw	6	40%		3.6		8%	
Hay	10	20%		8		12%	% Maintenan
Average ME of Diet (maintenance	10.2	TOTAL DM (kg) Offered	10.0	TOTAL ME	86		74%
demand increases with lower ME feeds)	10.2	TOTAL DM (kg) Eaten	8.4			Pre	otein
						18% (1.51kg)
Liveweight (kg)	500	Maintenance (MIME)	117	90% Target	105	Target > 159 (Optim	% for Springers al > 2.2kg)

Transition (Springers to Early Lactation)

Transition Rumination Rates:

2023

Rumination Activity

Mins/Day for Each Period

Other measures of transition success?

Transition Rumination Rates:

NEFA Blood Test Results:

Feeding Changes 2022/23

Feeding:

Diet for Period	LUDF 2022/2023	LUDF 2023/2024
Springers (Day -1 to -7)	Grass = 4kg Baleage = 6kg (Ad-lib) <i>Calving on cropping dirt</i>	Grass = 6kg Silage = 6kg (Pre grazing 3,500 cover)
Colostrum (Day 1-4)	Grass = Ad-lib (1700-1800 residuals) OAD Milking, Skip-a-day on Day 1 if Required	Grass = 6kg (pre-grazing 3,300) Silage = 6kg OAD Milking
Early Lactation (Day 8-10)	Grass = Typically 100% of diet. Silage more likely to be added in later round when ground drier (1600 residuals)	Grass = 14kg Silage = 2-3kg

Transition (Springers to Early Lactation)

Transition Rumination Rates:

TRANSITION

Rumination Activity

2024

Mins/Day for Each Period

Period	Change
Springers	+47 mins/day
Calving	+40 mins/day
Colostrum	+41 mins/day
Early Lactation	+17 mins/day

NEFA Blood Test Results:

Pre-Mate Period (Cycling + Feeding)

BCS Change Calving to September

BCS for 1 March 2023 - 31 July 2024

Print

Pre-Mate Cycling Rates (Day -7 from PSM) 2022/23

Cows Cycling by Day -7 from PSM

The following graphs highlight to what extent age and laterr calvers influenced cycling. Early calving young cows should cycle well by the PSM and issues in this group can highlight a more generalised nutritional or transition problem.

Group	Change
1 st Lactation	-11%
2 nd Lactation	+13%
2-6 Lactation Early	+4%
Herd	-4%

2023/24

Cows Cycling by Day -7 from PSM

The following graphs highlight to what extent age and laterr calvers influenced cycling. Early calving young cows should cycle well by the PSM and issues in this group can highlight a more generalised nutritional or transition problem.

(NOTE PSM delayed 5 in 2022 season – heifers & herd calved VERY early)

Mating Period

% of Non-Pregnant Cows Conceiving in each 3 Week Mating Round

2022/23

In-Calf Rate

Percentage of non-pregnant animals conceiving in each 3 week mating round. This can highlight changes in nutrition over mating.

Energy Deficit?

*	LUDF	Liam
	NEFA Levels	NEFA Levels
10 th Aug	.7	.4
29 th Sept	.3	.3
27 th October	.2	.3
10 th November	.4	.2
24 th November	.1	.2
8 th Dec	.1	.2
22 nd Dec	.2	.2

* NOTE: This energy pinch has been noted at around the same date in previous seasons, and doesn't 3/10/2022 appear to be a seasonal anomaly.

Average of NDF% dm Average of MJME

Milk Protein?

The Nike Tick – Is it real?

Feeding over Mating - Milk Protein as an Indicator

Veterinary Centre by the Big Blue Cross

www.vet111.co.nz | 0800 VET 111 | CLINICS Oamaru • Waimate • Palmerston • Glenavy • Omarama • Kurow • Ranfurly

The Science – Energy & Milk Protein

Figure 3. Steps leading to increased milk protein production. increased amino acid ncreased increased increased ncreased starch milk protein propionate uptake into insulin glucose production in the diet production synthesis mammary release gland

> "So basically starch/concentrate/energy feeding increases insulin which ends up increasing MP synthesis"

Veterinary Centre by the Big Blue Cross

www.vet111.co.nz | 0800 VET 111 | CLINICS Oamaru • Waimate • Palmerston • Glenavy • Omarama • Kurow • Ranfurly

Protein Curves vs Repro Quartiles 23/24

How do you fix the flat line?

Farm Name	LUDF 2022/23				Date	4/07	/2024
	ME	Wastage	kg of Feed	Multiplier	Protein %	Protein (kg)	ME
Grass	12.08	10%	19	10.872	25%	4.28	206.568
Crop (Break Fed)	12	15%		10.2	15%		
Grass Silage	11	25%		8.25	25%		
Maize Silage	11	25%		8.25	9%		
Grain	13	5%		12.35	11%		
In Shed Other	13	11%		11.57	28%		
РКЕ	11	5%		10.45	14%		
Crop (Lifted)	12	10%		10.8	10%		
Baleage	10	20%		8	17%		
Molasses	12	5%		11.4	4%		
Straw	6	40%		3.6	3%		
Other (i.e DDG)	12.5	5%		11.875	28%		
Average ME of Diet		TOTAL DM (kg) Offered	19.0		Totals	25.0%	207
demand increases with lower ME feeds)	12.1	TOTAL DM (kg) Eaten	17.1			Protein %	Total ME
					Maintenance (MJME)	53.	.675
Liveweight (kg)	475	Walk (km) Flat	2.00		Milk (MJME)	154	
Milk kgMS/Cow	2.00	Walk (km) Rolling			Walking	4	
Ver 3		Walk (km) Hilly/Steep			Total Demand (MJME)	2	12

Ave ME of Grass (22/23) = 12.08

Feed Offered vs	Expected Weight
Demand (%)	Change
98%	-0.14 Kg/Day
-5.11 MJME	-0.14 BCS
NEGATIVE ENERGY	Expected BCS Change
BALANCE	over 30 days

Lactational Energy Checker

Urea Supplementation

1st Round – 25kg N/ha

2nd Round (Sept) – 46kg N/ha

3rd Round (October) – 40 kg N/Ha

Luxury nitrogen levels in the soils during the heading phase encourage vegetative growth, plus we get higher response rates. Nitrogen rates were cut Jan/Feb to keep under the 180 kgN/Ha Cap.

Date	Event	Description	Area	Rate/Reading
28/10/2023	Fertiliser	UREA Bulk	50.97	Variable
21/10/2023	Fertiliser	UREA Bulk	32.12	Variable
16/10/2023	Fertiliser	UREA Bulk	12.68	85kg/ha
16/10/2023	Fertiliser	UREA Bulk	36.72	85kg/ha
16/10/2023	Fertiliser	UREA Bulk	20.06	85kg/ha
12/10/2023	Fertiliser	FLOWFERT N	34.15	222L/ha
06/10/2023	Fertiliser	FLOWFERT N	33.37	222L/ha
29/09/2023	Fertiliser	UREA Bulk	35.79	85kg/ha
26/09/2023	Fertiliser	AMMO 31 Bulk	39.17	100kg/ha
13/09/2023	Fertiliser	AMMO 31 Bulk	37.64	100kg/ha
05/09/2023	Fertiliser	AMMO 31 Bulk	80.55	100kg/ha

Grass Quality

NDF Levels 2022 (33.2 ave) vs 2023 (35.5 ave) LUDF

Farm Name	LUDF 2023/24				Date	4/07/	/2024
	ME	Wastage	kg of Feed	Multiplier	Protein %	Protein (kg)	ME
Grass	12.42	10%	19	11.178	25%	4.28	212.382
Crop (Break Fed)	12	15%		10.2	15%		
Grass Silage	11	25%		8.25	25%		
Maize Silage	11	25%		8.25	9%		
Grain	13	5%		12.35	11%		
In Shed Other	13	11%		11.57	28%		
РКЕ	11	5%		10.45	14%		
Crop (Lifted)	12	10%		10.8	10%		
Baleage	10	20%		8	17%		
Molasses	12	5%		11.4	4%		
Straw	6	40%		3.6	3%		
Other (i.e DDG)	12.5	5%		11.875	28%		
Average ME of Diet (maintenance & milk		TOTAL DM (kg) Offered	19.0		Totals	25.0%	212
lemand increases with lower ME feeds)	12.4	TOTAL DM (kg) Eaten	17.1			Protein %	Total ME
					Maintenance (MJME)	53.	675
Liveweight (kg)	475	Walk (km) Flat 2.00 Milk (MJI		Milk (MJME)	1	54	
Milk kgMS/Cow	2.00	Walk (km) Rolling			Walking	4	
Ver 3 Wal		Walk (km) Hilly/Steep			Total Demand (MJME)	212	

Ave ME of Grass (22/23) = 12.42

Feed Offered vs	Expected Weight
Demand (%)	Change
100%	0.02 Kg/Day
+0.71 MJME	0.02 BCS
POSITIVE ENERGY	Expected BCS Change
BALANCE	over 30 days

Lactational **Energy Checker**

Balancing the Diet

Do your energy sums

	DM	ME	СР	N content	NDF	SSS	Starch	Fat
	%	ME/kgDM	%DM	%DM	%DM	%DM	%SSS	%
Barley	89.0	13.0	11	1.8	21.0	61.4	90.0	2.0
Bran	85.0	9.8	17.1	2.7	51.0	20.6	95.0	4.4
Canola meal	90.0	11.5	38	6.1	30.0	-	1.5	3.5
Lupin	89.0	12.0	34.2	5.5	33.0	22.0	90.0	5.5
Maize grain	89.0	13.6	8	1.3	9.0	75.1	99.0	4.3
Oats	89.0	11.5	13	2.1	31.0	47.5	90.0	4.9
Peas	87.0	13.0	24	3.8	23.0	46.0	-	1.8
Soya bean meal	90.0	12.9	50	8.0	14.0	27.0	90.0	1.4
Soya bean hulls	88.0	12.0	13.5	2.2	60.0	27.0	1.4	-
Таріоса	88.0	12.8	5	0.8	20.0	27.0	71.0	2.0
Wheat	89.0	12.6	11.3	1.8	14.0	70.0	90.0	1.9
Whole cotton seed	88.0	16.0	23	3.7	44.0	70.0	90.0	18.0
Cotton seed meal	89.0	12.0	min 43	min 6.9	20-23	70.0	1.5	0.1

Veterinary Centre by the Big Blue Cross

www.vet111.co.nz | 0800 VET 111 | CLINICS Oamaru • Waimate • Palmerston • Glenavy • Omarama • Kurow • Ranfurly

Mating Period

Group	Change
Week 1-3	+3%
Week 4-6	+2%
Week 7-9	+8%

% of Non-Pregnant Cows Conceiving in each 3 Week Mating Round

2022/23

2023/24

In-Calf Rate

Percentage of non-pregnant animals conceiving in each 3 week mating round. This can highlight changes in nutrition over mating.

In-Calf Rate

Percentage of non-pregnant animals conceiving in each 3 week mating round. This can highlight changes in nutrition over mating.

Weekly Conception Rate

2023/24

Conception Rate by Mating Week

Milk Protein Curve (the NIKE Tick) as a Proxy for Energy Balance

Milk Solids / Lactation Curve

- 37581 LUDF 2023/24 - 37581 LUDF 2022/23

Urea or Season??? Protein Curves 23/24 vs 22/23

www.vet111.co.nz | 0800 VET 111 | CLINICS Oamaru • Waimate • Palmerston • Glenavy • Omarama • Kurow • Ranfurly

Addressing the NICR

PHANTOM COWS

EXTENDING MATING

Phantom Cows

LUDF 23/24 season phantom cow summary

4 phantom scanning visits -

05/12/2023	15 phantoms treated
14/12/2023	11 phantoms treated
28/12/2023	8 phantoms treated
08/01/2024	8 phantoms treated

PHANTOM COWS

In 2022/23 if NO intervention EXPECTED NICR from JUST Phantom cows would have been >10%

(In 2023/24 <7%)

Total 42 phantom treatments (38 cows), 4 cows got treated twice, after not responding to their first PG shot.

26 of the 38 cows (68%) ended up pregnant. Drop in MT rate = 4.8%

LIKELY ~ 20% of intervention cows would have got pregnant without intervention (VC internal data set), so impact drop = 3.4%

Number of Phantoms and Number Concieving Without Intervention Against Days From End of Mating

Days From End of Mating	10	15	20	25
Percentage of Herd to Scan	73.4%	69.0%	64.1%	57.8%
Phantom Percentage	8.3%	9.2%	10.0%	11.4%
Percentage Mismated	2.8%	2.6%	2.3%	2.5%
Submission Rate Phantoms Before End of Mating	35.4%	49.0%	58.2%	64.7%
Percentage phantoms conceiving naturally	20.0%	26.1%	29.6%	35.5%
GPG +P4 Pregnancy Rate	45.0%	45.0%	45.0%	45.0%
Empty Rate Difference	25.0%	18.9%	15.4%	9.5%
DIM Change per phantom cow	-0.93	0.31	1.43	1.97
Benefit from Days in Milk per Phantom Cow	-\$8.18	\$2.71	\$12.60	\$17.32
Benefit from Empty Rate per Phantom Cow	\$250.13	\$188.92	\$154.06	\$95.31
Total Cost Benefit	\$286,835	\$216,087	\$175,669	\$85,557
Cost Benefit Per Phantom	\$183.75	\$133.06	\$106.53	\$50.75
Herd Empty rate change	1.52%	1.20%	0.99%	0.63%
ROI	4.16	3.27	2.77	1.82

Conclusions

1. Treating after first round of AB

- There was a positive return on investment of 1.7-2 x
- Delaying slightly to 26+ days resulted in a better ROI
- Expected herd empty rate change 0.6-0.7%
- Never too late to intervene

2. Phantom cow scanning

- Scanning 10 days before the end of mating gave the biggest return
- Reducing the cut off from 35 to 28 days increased the benefits
- 1.5% reduction in empty rate
- Mismatings a significant issue to be aware of

Mating Period / SGL Semen

The mating period was extended from the traditional 10 weeks to 12 weeks for the 2023 mating period. Ultrashort gestation semen was used for the tail end of mating:

MATING PLAN DETAILS

1-Tech-N-Yearlings-96	Sexed Semen Kiwi Cross 19 Oct - 19 Oct (1 days)
2-Tech-S-Yearlings-50	PS Forward Pack Ki SGL Dairy Kiwi Cross 05 Nov = 10 Nov (6 days)
3-Tech-N-Cows-147-Ho	Sexed Semen Kiwi Cross 23 Oct – 12 Nov (21 days)
4-Tech-N-Cows-310-Ho	PS Forward Pack Kiwi Cross 23 Oct = 03 Dec (42 days) SGL Dairy Kiwi Cross 04 Dec = 14 Jan (42 days)
5-Tech-N-Cows-250-Ho	Alpha 23 Oct - 17 Dec (56 days)
6-Tech-N-Yearlings-150	SGL Dairy Kiwl Cross 05 Nov - 10 Nov (6 days)_1
	Oct 23 Oct 30 Nov 6 Nov 13 Nov 20 Nov 27 Dec 4 Dec 11 Dec 18 Dec 25 Jan 1 Jan 8

Scanning was completed on a weekly basis through December, with a final scan in Late February. It was confirmed that an additional 4.2% (24) cows were in calf with combining the collar and short gestation technologies. Mating can be extended without collars, however we will be demanding staff do extra work (drafting) through the xmas/new year break. Collars are automated.

EXTENDING MATING

In 2022/23 by extending the mating length 3.3% more cows got in calf

In 2023/24 4.2% (with 5 days less mating)

3WICR 52% to 54%

6WICR 75% (held)

Conception Rate 50% to 53%

NICR 9% (13%?) to 7%

5 DAYS LESS MATING

Fertility Focus 2023: Seasonal

Lincoln University The Manager (University Dairy Farm) Hancox

1 Overall herd reproductive performance

Report date:

Herd Code:

(based on AB or pregnancy test data)

Duration of mating:

Duration of AB period:

No of cows included:

Mating start & end date:

These cows calved between:

Next planned start of calving:

PTPT:

04/07/24

BQCY

6/114

563

30/07/24

85 days

85 days

14/06/23 and 20/12/23

22/10/23 - 14/01/24

Inca PERMUTY FOCUS

Version 3.01

Dairynz≥

Milk Solids / Lactation Curve

- 37581 LUDF 2023/24 - 37581 LUDF 2022/23

BCS for 1 March 2023 - 31 July 2024

Print

Thank you to our SIDDC partners for enabling this project and to Ryan Luckman from The Veterinary Centre.

